Die Beschichtung des Plättchens, das Professor Thomas Fässler, Inhaber des Lehrstuhls für Anorganische Chemie mit Schwerpunkt Neue Materialien an der TU München in Händen hält, schimmert wie Opal. Und sie hat erstaunliche Eigenschaften: Sie ist hart wie ein Kristall, hauchdünn und – da hochporös – federleicht.
Indem sie in die Poren des Materials geeignete organische Polymere einbauen, können die Wissenschaftler die elektrischen Eigenschaften der entstehenden Hybridmaterialien maßschneidern. Die Bauweise spart nicht nur Platz, sondern schafft auch große Grenzflächen, die den Wirkungsgrad erhöhen.
„Unser Ausgangsmaterial kann man sich wie ein großporiges Gerüst vorstellen, ähnlich aufgebaut wie eine Bienenwabe. Die Wände bestehen aus anorganischem, halbleitendem Germanium, das elektrische Ladungen erzeugen und speichern kann. Weil die Wabenwände hauchdünn sind, müssen Ladungen keine weiten Wege zurücklegen“, erklärt Fässler.
Der neue Bauplan: Bottom-up statt Top-down
Um sprödes, hartes Germanium in eine flexible und poröse Schicht zu verwandeln, mussten die Forscher allerdings einige Tricks anwenden. Traditionell werden Ätztechniken eingesetzt, um die Oberfläche von Germanium zu strukturieren. Diese Top-down-Methode ist jedoch auf atomarer Ebene schwer kontrollierbar. Das neue Verfahren löst dieses Problem.
Zusammen mit seinem Team hat Fässler einen Syntheseweg etabliert, der die gewünschten Strukturen exakt und reproduzierbar erzeugt: Ausgangsmaterial sind Cluster aus jeweils neun Germanium-Atomen. Weil diese Cluster elektrisch geladen sind, stoßen sie sich ab, solange sie sich in Lösung befinden. Eine Vernetzung findet erst statt, wenn das Lösungsmittel abgedampft wird.
Sie kann durch einfaches Erhitzen auf 500°C oder chemisch erfolgen. Dazu gibt man beispielsweise Germaniumchlorid zu. Nimmt man stattdessen andere Chloride, wie zum Beispiel Phosphorchlorid, so lassen sich die Germaniumstrukturen auf einfachste Weise dotieren. Die Eigenschaften der resultierenden Nanomaterialien können die Wissenschaftler damit gezielt einstellen.
Kunststoffkügelchen als Nano-Template
Damit die Germanium-Cluster die gewünschten porösen Strukturen bilden, entwickelte LMU-Forscherin Dr. Dina Fattakhova-Rohlfing eine Methode, die eine Nanostrukturierung ermöglicht: Winzige Polymerkügelchen bilden im ersten Schritt dreidimensionale Schablonen.
Im nächsten Schritt füllt die Germaniumcluster-Lösung die Lücken zwischen den Kügelchen. Sobald sich auf der Oberfläche der Kügelchen stabile Germanium-Netzwerke gebildet haben, werden die Template durch Erhitzen herausgelöst. Übrig bleibt der porenreiche Nano-Film.
Die eingesetzten Polymerkügelchen haben einen Durchmesser von 50 bis 200 Nanometern und bilden eine Opalstruktur. Das Germanium-Gerüst, das an ihren Oberflächen entsteht, bildet die Negativform – eine inverse Opalstruktur. Die Nanoschichten schimmern daher wie Opal.
„Schon das poröse Germanium hat einzigartige optische und elektrische Eigenschaften, von dem viele energierelevante Anwendungen profitieren können“, sagt LMU-Forscherin Dr. Dina Fattakhova-Rohlfing, die zusammen mit Fässler das Material entwickelte. „Darüber hinaus können wir die Poren mit verschiedensten funktionellen Stoffen füllen und so eine breite Palette neuartiger Hybridmaterialien erzeugen.“
Nano-Schichten machen portable Photovoltaik fit für die Zukunft
„Kombiniert mit Polymeren eignen sich poröse Germanium-Strukturen für die Entwicklung einer neuen Generation stabiler, superleichter und flexibler Solarzellen, die unterwegs Handy, Kamera und Laptop aufladen könnten“, erläutert Physiker Peter Müller-Buschbaum, Professor für Funktionelle Materialien der TU München.
Hersteller auf der ganzen Welt suchen derzeit nach leichten und strapazierfähigen Materialien für portable Solarzellen. Bisher werden meist organische Verbindungen verwendet, die empfindlich und nicht besonders langlebig sind. Durch Hitze und Lichteinstrahlung zersetzen sich die Polymere, die Leistung nimmt ab. Die dünnen und gleichzeitig stabilen Germanium-Hybridschichten wären da eine echte Alternative.
Nanoschichten für neue Batteriesysteme
Als nächstes wollen die Forscher die neue Technik nutzen, um auch hochporöse Silizium-Schichten herzustellen. Die Schichten werden derzeit auch als Anode für wieder aufladbare Batterien getestet. Sie könnten die bisher üblichen Graphitschichten in Akkus ersetzen und deren Kapazität verbessern.
Gefördert wurde die Entwicklung durch das Programm »Solar Technologies go Hybrid« des Bayerischen Wissenschaftsministeriums, im Rahmen des Exzellenzclusters „»Nanosystems Initiative Munich (NIM)« durch die Deutsche Forschungsgemeinschaft sowie durch das Center for Nanoscience (CeNS).
Publikation:
Zintl Clusters as Wet Chemical Precursors for Germanium Nanomorphologies with Tunable Composition; Manuel M. Bentlohner, Markus Waibel, Patrick Zeller, Kuhu Sarkar, Peter Müller-Buschbaum, Dina Fattakhova-Rohlfing, Thomas F. Fässler Angewandte Chemie, online 03.12.2015 – DOI: 10.1002/ange.201508246 http://onlinelibrary.wiley.com/doi/10.1002/ange.201508246/full