Der Anteil der Windenergie am Gesamtstrom steigt von Jahr zu Jahr. Die riesigen Rotorblätter sind das Herzstück jeder Windenergieanlage. Das Fraunhofer-Institut für Windenergiesysteme IWES hat im Projekt »SmartBlades« zusammen mit Partnern ein Rotorblatt entwickelt, das durch eine neuartige Biegetorsions-Kopplung in der Lage ist, hohe Schwankungen der Windstärken effizienter zu nutzen. Im Folgeprojekt »SmartBlades2« wird das Konzept nun mithilfe eines Demonstrators experimentell überprüft.
Mehr als 28 000 Windenergieanlagen mit einer Gesamtleistung von 50 Gigawatt sind derzeit in Deutschland in Betrieb: Dies entspricht einem Anteil von 12,3 Prozent an der gesamten deutschen Stromproduktion im Jahr 2016. Mit diesen Leistungsdaten steht die deutsche Windenergiebranche auf Platz eins in Europa, wie die Zahlen des Bundesverbands Windenergie belegen. Derzeit wird intensiv daran geforscht, die Technologie weiterzuentwickeln. Ganz vorne mit dabei ist das Fraunhofer-Institut für Windenergiesysteme IWES mit Hauptsitz in Bremerhaven. Im Rahmen des Verbundprojekts »SmartBlades2« untersuchen die Forscherinnen und Forscher das Konzept der Biegetorsions-Kopplung (BTK) für Rotorblätter weiter. Die passiv arbeitende Kopplung passt sich jederzeit an die Windkräfte an, die auf das Rotorblatt einwirken. Wenn der Winddruck zu stark wird, reduziert sie die einwirkenden Kräfte durch Verdrehung.
Die Rotorblätter herkömmlicher Windenergieanlagen reagieren nur sehr langsam auf wechselnde Windstärken. Ein Rotorblatt mit einer Länge von bis zu 85 Metern beschreibt eine Kreisfläche von 22 670 Quadratmetern – so groß wie vier Fußballfelder oder der Petersplatz in Rom. Innerhalb dieser Fläche kann die Windstärke sehr unterschiedlich sein: So kann beispielsweise auf dem Blatt, das gerade nach oben zeigt, ein ganz anderer Druck wirken als auf das untere Blatt. Eine einzelne Böe lässt sich innerhalb der Rotorblätter nicht ausgleichen, da konventionelle Blätter zu starr sind, um sich zu verdrehen. Falls eine Böe bei zu starkem Wind auftritt, drehen daher die Betreiber der Anlagen die Rotorblätter komplett aus dem Wind heraus. Das führt zu langen Standzeiten, in denen kein Strom erzeugt wird.
„Das im Projekt entwickelte Demonstrator-BTK-Blatt verfügt über eine Vorkrümmung, die Blattspitze ist in Rotationsrichtung etwas nach hinten verschoben. Das 20 Meter lange Rotorblatt ist somit in der Lage, sich bei starken Böen ein Stück weit um die eigene Achse zu verdrehen und dem Winddruck gewissermaßen auszuweichen“, erklärt der IWES-Technologiekoordinator für BTK-Blätter Dr. Elia Daniele. Das reduziert die Kräfte, die auf das Blatt und letztlich die ganze Anlage einwirken. Die Verwendung von BTK-Blättern an einer neu geplanten Windenergieanlage erlaubt daher ein geringeres Gesamtgewicht der Anlage, weil die Struktur weniger stark belastet wird. Bei bestehenden Anlagen kann durch den nachträglichen Einsatz von BTK-Blättern der Rotordurchmesser erhöht werden, ohne dass weitere Anlagenkomponenten angepasst werden müssen. Dies führt durch eine höhere Windausbeute zu einer Ertragssteigerung.
Test unter realistischen Bedingungen
Um das neuartige Design zu testen, werden mehrere Wochen lang statische und dynamische Tests im Rotorblattprüfstand des Fraunhofer IWES in Bremerhaven durchgeführt. Erstmals haben die Prüfingenieure dort ein BTK-Blatt montiert. Das Blatt wurde vom Fraunhofer IWES ausgelegt und vom Projektpartner DLR gefertigt. Im statischen Tests wird die Haltbarkeit bei Extrembelastung geprüft. „Der Aufbau für den Torsionstest des Rotorblattes ähnelt zwar dem konventionellen Szenario der statischen Prüfung, erfordert aber einen höheren Aufwand für die exakte Messung der zusätzlichen Verformung“, so IWES-Prüfingenieur Dipl.-Ing. Tobias Rissmann zur besonderen Herausforderung dieses Tests. Mithilfe eines optischen Messsystems wurde die Verformung entlang der drei Hauptachsen überwacht. Zusätzlich kamen Winkelsensoren zum Einsatz, um sicherzustellen, dass die Kraft auch wirklich senkrecht zur Blattachse eingeleitet wurde. Während der anschließenden dynamischen Tests (Ermüdungstests) werden die Belastungen eines kompletten Rotorblattlebens von 20 Betriebsjahren in einem stark verkürzten Zeitraum nachgebildet.
Nach Abschluss der Prüfstandtests werden drei baugleiche BTK-Rotorblätter in die USA verschifft. Dort, am Fuß der Rocky Mountains, werden sie für einen Feldtest an eine Forschungsturbine des Projektpartners National Renewable Energy Laboratory (NREL) montiert. Die dann folgenden Messungen, durchgeführt von Fraunhofer-Forschern, sollen zeigen, ob die passive Verdrehung auch im praktischen Betrieb unter freiem Himmel funktioniert wie erwartet. Für diese Tests kommt auch ein im Projekt neu entwickeltes, so genanntes »Aeroprobe System« zum Einsatz. Dabei messen zwei Drucksonden an der Blattoberfläche die Umströmung der Rotorblätter. Zudem wird die Strömung am Rotorblatt durch Wollfäden sichtbar gemacht. Auf diese Weise können die Fraunhofer-Experten die aerodynamischen Verhältnisse exakt ermitteln. Innerhalb des Blattes messen weitere Sensoren die Beschleunigung an den Blattspitzen, während Kamera-Reflektor-Systeme Verformungen detektieren. Das Fraunhofer IWES plant nicht, selbst Rotorblätter zu konstruieren; vielmehr soll Know-how aufgebaut und den Industriepartnern zugänglich gemacht werden. Das BTK-Blatt dient als Technologiedemonstrator und soll die Nutzbarkeit dieser Technologie an kommerziellen Blättern untersuchen.
Das deutsche Bundesministerium für Wirtschaft und Energie (BMWi) fördert das Projekt »SmartBlades2« mit 15,4 Mio. Euro Gesamtprojektvolumen. Auf Industrieseite sind verschiedene Blatt- bzw. Anlagenhersteller beteiligt, um das Potenzial für den industriellen Einsatz zu untersuchen.
Partner:
- Deutsches Zentrum für Luft- und Raumfahrt (DLR)
- Fraunhofer-Institut für Windenergie und Energiesystemtechnik IWES
- ForWind – Zentrum für Windenergieforschung
- GE Global Research
- Henkel AG & Co. KGaA
- Nordex Acciona Windpower
- Senvion
- SSB Wind Systems GmbH & Co. KG – Nidec
- Suzlon Energy Ltd.
- WRD Wobben Research and Development GmbH
Förderer: Bundesministerium für Wirtschaft und Energie BMWi (Deutschland) Projektlaufzeit: 06/2016 bis 11/2019