Wirkungsgrad durch Raum mit transparenten Wänden stark verbessert

Neuer Solar-Receiver senkt Stromkosten erheblich

von

Ein neues Design des Receivers soll den Wirkungsgrad von solaren Turmkraftwerken drastisch verbessern, wie Ali Mani, Maschinenbau-Professor an der Stanford University stanford.edu, verspricht. Er will die normalerweise schwarze Kammer, die die konzentrierten Wärmestrahlen der Sonne mittels Spiegeln einfängt, durch einen Raum mit transparenten Wänden ersetzen. Dann können die Strahlen jeden Punkt des Receivers erreichen und erwärmen.

Millionen Partikel im Einsatz

Das ambitionierte Vorhaben des Wissenschaftlers hat jedoch einen Haken: Ein großer Teil der Strahlen würde hindurchflitzen, ohne seine Wärme abzugeben. Auch die einzige deutsche Solar-Turmanlage, die das Deutsche Zentrum für Luft- und Raumfahrt dlr.de Jülich betreibt, hat einen konventionellen Receiver. Das ließe sich jedoch verhindern, indem die durch den Receiver strömende Luft, die ihre Wärme beispielsweise an einen Dampfkreislauf zur Stromerzeugung abgibt, künstlich eintrübt.

Das will Mani mit Millionen dunklen Partikeln erreichen, die sich mit der Luft vermischen. Jeder davon ist ein Receiver, eine schwarze Kammer im Kleinstformat sozusagen. Gemeinsam mit seinem Team hat er ein Simulationsprogramm entwickelt, mit dem er die Möglichkeiten durchspielt. Dabei hat sich herausgestellt, dass die Teilchen keineswegs das machen, was man von ihnen erwartet. Sie klumpen oft zusammen und lassen Regionen frei, durch die die Wärmestrahlen ungenutzt durchschlüpfen können. Die Teilchen sind damit schwer zu kontrollieren. Mani macht das mit einem Beispiel deutlich: Wenn Nebel beleuchtet wird, sieht man ein Wabern der Wassertröpfchen. Genauso verhalten sich die Partikel im Luftstrom.

Simulation auf Supercomputer

Perfekt wäre es, wenn die Teilchen in dem Luftstrom, der die Kammer schnell passiert, gleichmäßig verteilt wären. Doch das verhindern Turbulenzen, wie Experimente und Computersimulationen gezeigt haben. Die Luft heizte sich nicht gleichmäßig auf. Es blieben Kältelöcher übrig, schlecht für den Wirkungsgrad. „Wir standen fast wieder am Anfang“, so Mani. Um die Ursache der Clusterbildung herauszufinden, hat das Team die Luftströmung, die Partikelbewegungen und den Wärmeübergang per Computer simuliert.

Den Durchbruch brachte der Einsatz von Partikeln unterschiedlicher Größe. Anders als gleich große Teilchen klumpen diese nicht, sodass der Wärmeübergang effektiver wurde. Jetzt will Mani die bisher gewonnen Erkenntnisse durch Simulationsläufe mit Milliarden Partikeln auf einem Supercomputer des US-Ministeriums für Energie http://energy.gov verfeinern. Die Arbeiten könnten dazu führen, dass Strom aus Turmkraftwerken deutlich billiger wird.

Quelle: Pressetext

Ähnliche Artikel

Hinterlassen Sie einen Kommentar

* Zur Speicherung Ihres Namens und Ihrer E-Mailadresse klicken Sie bitte oben. Durch Absenden Ihres Kommentars stimmen Sie der möglichen Veröffentlichung zu.

Unseren Newsletter abonnieren - jetzt!

Neueste Nachrichten aus der Licht- und Elektrotechnik bestellen.